
Volcano.sh Security Audit

In collaboration with the CNCF, OSTIF and the Volcano.sh maintainers

Arthur Chen, Adam Korczynski, David Korczynski, Ada Logics

14th May 2025

Volcano.sh Security Audit 14th May 2025

About Ada Logics

Ada Logics is a software security company founded in Oxford, UK, 2018 and is now based in London. We are a team of dedicated,
pragmatic security engineers and security researchers that work hands-on with code auditing, security automation and
security tooling.

We are committed open source contributors and we routinely contribute to state of the art security tooling in the fuzzing
domain such as advanced fuzzing tools like Fuzz Introspector and continuous fuzzing with OSS-Fuzz. For example, we have
contributed to fuzzing of hundreds of open source projects by way of OSS-Fuzz. We regularly perform security audits of open
source software and make our reports publicly available with findings and fixes, and we have audited many of the most
widely used cloud native applications.

Ada Logics contributes to solving the challenge of securing the software supply-chain. To this end, we develop the tooling and
infrastructure needed for ensuring a secure software development lifecycle, and we deploy these tools to critical software
packages. On the tooling and infrastructure side, we contribute to projects such as the OpenSSF Scorecard project as well as
the Sigstore projects like SLSA and Cosign.

Ada Logics helps some of the most exposed organisations secure their software, analyse their code and increase security
automation and assurance, and if you would like to consider working with us please reach out to us via our website.

We write about our work on our blog. You can also follow Ada Logics on Linkedin, Twitter and Youtube.

Ada Logics ltd
71-75 Shelton Street,
WC2H 9JQ London,
United Kingdom

Volcano.sh Security Audit 1

https://github.com/ossf/fuzz-introspector
https://adalogics.com/blog/fuzzing-100-open-source-projects-with-oss-fuzz
https://adalogics.com/contact
https://adalogics.com/blog
https://www.linkedin.com/company/ada-logics
https://twitter.com/ADALogics
https://www.youtube.com/channel/UC9AiX8FOiOpK6mNggXSamBg

Volcano.sh Security Audit 14th May 2025

Contents

About Ada Logics 1

Audit contacts 3

Introduction 4
Risk scoring . 4
Scope . 5

Volcano.sh threat model 6
Volcano.sh trust boundaries . 6
Volcano.sh example attacks . 7
Volcano.sh threat actors . 8

Found issues 9
Attacker with foothold in elastic service or extender plugin can cause denial of service of scheduler 10
Resources unnecessarily run as root . 11
Resources lack seccomp profile . 12
Resources are not configured with seLinux . 13
Resources may have unnecessary capabilities . 14
Resources allow privilege escalation . 15
Servers lack header timeouts . 16
Scheduler exposes profiling endpoints by default . 18
Missing warning when Volcano is configured to skip SSL certificate verification 19
Source files are stored in repository as executables . 20

Volcano.sh Security Audit 2

Volcano.sh Security Audit 14th May 2025

Audit contacts

Contact Role Organisation Email

Adam Korczynski Auditor Ada Logics Ltd adam@adalogics.com

David Korczynski Auditor Ada Logics Ltd david@adalogics.com

Xavier Chang Maintainer Volcano.sh cxz2536818783@gmail.com

William Wang Maintainer Volcano.sh wang.platform@gmail.com

Amir Montazery Facilitator OSTIF amir@ostif.org

Derek Zimmer Facilitator OSTIF derek@ostif.org

Helen Woeste Facilitator OSTIF helen@ostif.org

Volcano.sh Security Audit 3

Volcano.sh Security Audit 14th May 2025

Introduction

In March and April 2025, Ada Logics carried out a security audit of Volcano.sh. The audit was a collaborative effort between
Ada Logics, the Volcano.sh maintainers and Open Source Technology Improvement Fund and was funded by the CNCF. This
report describes the work that Ada Logics (henceforth also reffered to as “we”) carried out during the audit, the results of the
work and the mitigations steps that Volcano.sh took.

The audit lasted five weeks during which we audited Volcano and had weekly meetings and ad hoc, unscheduled discussions
with the Volcano team. The high level goal was to perform a holistic security audit of Volcano, and to do that the audit had
the following goals:

1. Threat modelling. During the first week we focused primarily on threat modelling Volcano to map and enumerate
threats, sensitive data, threat actors, data flow and more formalities for reasoning over Volcanos security measures
later in the audit.

2. Manual auditing. After the first week our primary focus switched towards manually auditing Volcano. This involved
a combination of code auditing, static analysis-guided auditing, dynamic analysis-guided auditing and in-cluster
auditing.

3. Fuzzing. We integrated Volcano into OSS-Fuzz and wrote two fuzzers for the integration. The two fuzzers and Volcanos
OSS-Fuzz build script were merged into the Volcano source tree.

We found ten issues during the audit which we reported to the Volcano team as they came up through private channels. We
found the issues during different stages of the audit. One of the issues was assigned a CVE and released with a GitHub advisory.
This vulnerability could allow an attacker with limited privileges in the cluster to deny the Volcano scheduler of service which
is a central component of Volcano. Four of the issues were hardening recommendations to make Volcano secure by default
which the Volcano team completed by diligently evaluating the privileges that the components and resources need in the
cluster. In doing so, they could assign the lowest needed privileges to components and resources.

We shared the first version of this report with the Volcano team and OSTIF on 18th April 2025 and the second version on 14th
May 2025.

We would like to thank the Volcano team, OSTIF and the CNCF for the collaboration.

Risk scoring

During the audit we used a simplified risk scoring system that considers risk exposure and risk impact. Exposure is the level
at which an issue is exposed to an attacker. Impact is the level of privilege escalation an attacker can obtain by exploiting
the security issue. We score both on a scale of 1-5 and add the two scores together for a final combined score. This score
determines the severity of security issues. We assign this severity to the issues we find.

Risk Exposure

• 5: The security issue exists in core component(s) and is exposed in all use cases to untrusted input.
• 4: The security issue exists in widely used component(s) and is enabled by default. Users of the component(s) expose

the issue by default to untrusted input.
• 3: The issue is exposed to authenticated and/or authorized users only.
• 2: The issue exists in component(s) that users need to enable to be affected.
• 1: The issue is only exposed to trusted users.

Risk Impact

• 5: An attack will have the highest possible impact.
• 4: An attack will have high impact with some constraints or limitations.

Volcano.sh Security Audit 4

Volcano.sh Security Audit 14th May 2025

• 3: An attack can cause partial harm.
• 2: An attack can result in privilege escalation that will cause limited harm.
• 1: An attack can result in limited privilege escalation but requires further privilege escalation to cause harm.

We score each issue on both scales and then add the scores for a combined total score. The total score is the basis for the
overall severity of found issues.

• 10: Critical
• 9 - 8: High
• 7 - 6: Moderate
• 5 - 4: Low
• 3 - 1: Informational

Scope

The audit included the code in the following code repositories:

1. https://github.com/volcano-sh/volcano

The audit was not fixed to a particular commit; we worked constantly against the latest master branches.

Volcano.sh Security Audit 5

https://github.com/volcano-sh/volcano

Volcano.sh Security Audit 14th May 2025

Volcano.sh threat model

Volcano.sh trust boundaries

Volcano.sh runs inside a Kubernetes cluster and inherits its security model. Kubernetes sets boundaries to data inside the
cluster, and attackers against Volcano and its users in a runtime context are limited by Kubernetes’ security controls. In
this section we discuss Volcanos trust boundaries with the assumption that Volcano inherits Kubernetes’ trust model. We
enumerate the trust boundaries as they are intended to be, that is, the trust boundaries we draw are accepted in Volcano.
Trust boundaries are conceptual lines that separate different parts of Volcano based on their level of trust. These boundaries
indicate where control or responsibility changes between components, users, or systems and where Volcano must carefully
validate data, enforce permissions, and secure communications.

We identify the following trust boundaries in Volcano.

1. The first trust boundary is between volcano-admission and the Kube APIServer. If objects are accepted by volcano-
admission, their trust increase. Kubernetes admission controllers receive requests after the requests are authenticated

Volcano.sh Security Audit 6

Volcano.sh Security Audit 14th May 2025

and authorized. At trust boundary 1, the request crosses the final boundary before it is accepted.

2. The second trust boundary is between nodes in the cluster and the Kube APIServer. This is largely inherited from
the Kubernetes security model where nodes are isolated by a trust boundary. Nodes have lower trust than the Kube
APIServer, and as such, trust flows from low to high in the direction of nodes to the Kube APIServer.

While these trust boundaries define a typical use case, there are numerous ways attackers can escalate the privileges without
crossing these trust boundaries. For example, while requests that pass the admission controls of volcano-admission increase
in trust, they may still have limited privileges. For example, a request that creates a pod may be accepted on that premise,
but the request may be able to trigger a series of events inside the cluster that can lead to privilege escalations such as
leaking data or creating other resources. The faults that could allow such privilege escalations may not have their root cause
in volcano-admission but rather in other components that mishandle cluster resources. As such, trust boundaries are useful
for understanding accepted trust flow, and in the next section, we consider example attacks that malicious cluster users may
attempt to launch against the Volcano and its users.

Volcano.sh example attacks

In this section we consider example attacks that can threaten the confidentiality, integrity and availability of Volcano and
its data. In these example attacks we draw on our previously reaning over the Volcano attack surface, threat actors and its
security boundaries and pragmatically map these to production-level threats that could face Volcano. The list includes both
runtime and supply-chain attacks.

Example attack 1: Authenticated user can control batch resources

An authenticated user may attempt to control the way Volcano batches compute at the expense of other users’ jobs. In this
way, other users’ jobs would not be included in batches and this attack would constitute an insider threat actor, denial of
service attack against other users. The attacker would need to be authenticated and authorized.

Example attack 2: Authenticated user can read other users’ jobs

An authenticated user may attempt to read other authenticated users’ jobs which can contain private or personal data. This
can leak other users’ data and compromise the integrity of their jobs and internal processes.

Example attack 3: Authenticated user can modify other users’ jobs

An authenticated user can attempt to modify other users’ jobs in the cluster. This could lead to lack of integrity as the attacker
could change the data as part of the job. The attacker needs to be authenticated, and they would seek write-privileges to
other users’ jobs.

Example attack 4: Attacker can attempt to deny critical components from being operational

An attacker can attempt to make critical component fail such that no user in the cluster can use them. Denial of service of a
critical component can result in user not being able to use the entire cluster for their needs.

Example attack 5: MitM pre-job

An attacker may attempt to change the data that Volcano batches as part of another user’s job. As such, the victim intends
for Volcano to process data “A”, but an attacker intercepts the request between the user and the Volcano session and makes
Volcano process data “B” instead. As such, the victim believes Volcano is processing one job but is in fact processing another
which can impact their business decisions in an

Example attack 6: MitM post-job

An attacker may attempt to modify the result of another user’s job after the job has completed. As such, the job may result
with outcome “A” but the attacker presents the user with “B” instead. This can disrupt the victim’s business decisions.

Volcano.sh Security Audit 7

Volcano.sh Security Audit 14th May 2025

Volcano.sh threat actors

A threat actor is a persona with malicious intent that can affect the security of Volcano.sh. Threat actors can hold different
levels of permissions and can be any persona that has the potential to elevate their privileges. In this section we enumerate
Volcanos threat actors. Threat actors include actors that have a level of trust and will use that level of trust to further increase
their privileges, however, they are only a threat actor if they behave with such intent. For example, the list below includes
the Volcano.sh maintainers; Volcano.sh maintainers are by default trusted actors who do valuable work for the community.
At the same time, maintainers’ privileges are limited to maintaining the project and should not allow them to compromise
users’ deployments.

Name Level of privilege Description

1 Volcano.sh
maintainers

Moderate The Volcano.sh have high privileges in the context of Volcano.sh’s software
development lifecycle but have no privileges inside users’ clusters.
Maintainers are valuable members of the Volcano.sh community and are
responsible for reviewing code contributions, triaging issues, cutting
releases and supporting and engaging with the community. Attackers may
seek to obtain the trust of the community over a long period and obtain
maintainer status if it can allow them to exploit high valuable users of
Volcano.sh. As such, Volcano.sh should not overprivilege maintainers.

2 Volcano.sh
contributors

Low Volcano.sh contributors contribute new code or code changes to the
Volcano.sh code repository. They may attempt to introduce vulnerabilities
in the code that they can exploit at a later stage to target users at runtime.

3 Dependency
maintainers and
contributors

None Maintainers and contributors working on software projects that
Volcano.sh consumes as 3rd-party dependencies may be able to introduce
vulnerabilities in their software that could compromise Volcano.sh at
runtime.

4 Cluster maintainers High Volcano.sh adopters will likely have a cluster maintainer or devops team. If
an attacker is able to impersonate a cluster maintainer, their privileges
may vary depending on the use case. In this audit, we consider the cluster
maintainer to have sudo privileges in the cluster and as such does not
represent a threat. In other words, if the cluster maintainer - and no other
threat actor - can bring Volcano.sh in a vulnerable state, the root cause
does not constitute a security vulnerability.

5 Internal cluster
users

Low to High These are users with permissions inside the cluster albeit limited
privileges. Users will likely have granular permissions such as CREATE
permissions for particular resources. Internal cluster users should not be
able to elevate their privileges beyond their granularly assigned privileges
or to any permissions that allow them to compromise the security of the
cluster, Volcano.sh and its users.

6 External user None The external user does not have any access to the cluster or any
permissions assigned to it. The external user is not be able to authenticate
and authorize. As such, any way that this threat actor can elevate their
privileges in the cluster constitutes a security breach.

Volcano.sh Security Audit 8

Volcano.sh Security Audit 14th May 2025

Found issues

In this section we describe the issues we found in the audit.

ID Name Severity Status

ADA-VLCN-2025-1 Attacker with foothold in elastic service or extender plugin can cause denial of
service of scheduler

High Fixed

ADA-VLCN-2025-2 Resources unnecessarily run as root Moderate Fixed

ADA-VLCN-2025-3 Resources lack seccomp profile Moderate Fixed

ADA-VLCN-2025-4 Resources are not configured with seLinux Moderate Fixed

ADA-VLCN-2025-5 Resources may have unnecessary capabilities Moderate Fixed

ADA-VLCN-2025-6 Resources allow privilege escalation Moderate Fixed

ADA-VLCN-2025-7 Servers lack header timeouts Low Fixed

ADA-VLCN-2025-8 Scheduler exposes profiling endpoints by default Low Fixed

ADA-VLCN-2025-9 Missing warning when Volcano is configured to skip SSL certificate verification Low Fixed

ADA-VLCN-2025-10 Source files are stored in repository as executables Informational Fixed

Volcano.sh Security Audit 9

Volcano.sh Security Audit 14th May 2025

Attacker with foothold in elastic service or extender plugin can cause denial of service of
scheduler

Severity High

Status Fixed

CWE CWE-400: Uncontrolled Resource Consumption

id ADA-VLCN-2025-1

This is a disclosure for a security issue in Volcano. The issue allows an attacker who has compromised either the Elastic
service or the extender plugin (henceforth AKA “the two vulnerable services”) to cause denial of service of the scheduler. This
is a privilege escalation, because Volcano users may run their Elastic service and extender plugins in separate pods or nodes
from the scheduler. In the Kubernetes security model, node isolation is a security boundary, and as such an attacker is able
to cross that boundary in Volcanos case if they have compromised either the vulnerable services or the pod/node in which
they are deployed. The two vulnerable services are:

1. https://github.com/volcano-sh/volcano/blob/b4f35c83ec5e028f10e457c6abe89684cb491e1b/pkg/scheduler/metri
cs/source/metrics_client_elasticsearch.go

2. https://github.com/volcano-sh/volcano/blob/2dff5d83e975578eb6ac53436bfa349599ef68cc/pkg/scheduler/plugin
s/extender/extender.go

The scheduler communicates with the two vulnerable plugins by sending an HTTP request to the plugin and reading the
response. In the case of the elastic service, Volcano uses an elastic client which makes an HTTP request under the hood,
and in the case of the extender plugin, Volcano sends its own HTTP request. The issue is that when the scheduler reads
the response from the two vulnerable plugins, Volcano does so in an unbounded manner, meaning that it reads the entire
response regardless of how large the response is. As such, an attacker with control over the two vulnerable services can
return a large response to the scheduler to cause the scheduler to consume excessive memory and be denied of service as a
result. This will make the scheduler unavailable to other users and workloads in the cluster. The scheduler will either crash
with an unrecoverable OOM panic or freeze while consuming excessive amounts of memory.

The two vulnerable services read the unbounded response on the following lines:

1. https://github.com/volcano-sh/volcano/blob/b4f35c83ec5e028f10e457c6abe89684cb491e1b/pkg/scheduler/metri
cs/source/metrics_client_elasticsearch.go#L154

2. https://github.com/volcano-sh/volcano/blob/2dff5d83e975578eb6ac53436bfa349599ef68cc/pkg/scheduler/plugin
s/extender/extender.go#L325

json.NewDecoder().Decode can exhaust the host machines memory if the input buffer is large enough. After a while
the machine freezes temporarily and the process then kills. The scheduler will behave in a this manner on the following
lines:

1. https://github.com/volcano-sh/volcano/blob/b4f35c83ec5e028f10e457c6abe89684cb491e1b/pkg/scheduler/metri
cs/source/metrics_client_elasticsearch.go#L154

2. https://github.com/volcano-sh/volcano/blob/2dff5d83e975578eb6ac53436bfa349599ef68cc/pkg/scheduler/plugin
s/extender/extender.go#L325

Volcano has issued the following advisory for this issue: GHSA-hg79-fw4p-25p8

Volcano.sh Security Audit 10

https://github.com/volcano-sh/volcano/blob/b4f35c83ec5e028f10e457c6abe89684cb491e1b/pkg/scheduler/metrics/source/metrics_client_elasticsearch.go
https://github.com/volcano-sh/volcano/blob/b4f35c83ec5e028f10e457c6abe89684cb491e1b/pkg/scheduler/metrics/source/metrics_client_elasticsearch.go
https://github.com/volcano-sh/volcano/blob/2dff5d83e975578eb6ac53436bfa349599ef68cc/pkg/scheduler/plugins/extender/extender.go
https://github.com/volcano-sh/volcano/blob/2dff5d83e975578eb6ac53436bfa349599ef68cc/pkg/scheduler/plugins/extender/extender.go
https://github.com/volcano-sh/volcano/blob/b4f35c83ec5e028f10e457c6abe89684cb491e1b/pkg/scheduler/metrics/source/metrics_client_elasticsearch.go#L154
https://github.com/volcano-sh/volcano/blob/b4f35c83ec5e028f10e457c6abe89684cb491e1b/pkg/scheduler/metrics/source/metrics_client_elasticsearch.go#L154
https://github.com/volcano-sh/volcano/blob/2dff5d83e975578eb6ac53436bfa349599ef68cc/pkg/scheduler/plugins/extender/extender.go#L325
https://github.com/volcano-sh/volcano/blob/2dff5d83e975578eb6ac53436bfa349599ef68cc/pkg/scheduler/plugins/extender/extender.go#L325
https://github.com/volcano-sh/volcano/blob/b4f35c83ec5e028f10e457c6abe89684cb491e1b/pkg/scheduler/metrics/source/metrics_client_elasticsearch.go#L154
https://github.com/volcano-sh/volcano/blob/b4f35c83ec5e028f10e457c6abe89684cb491e1b/pkg/scheduler/metrics/source/metrics_client_elasticsearch.go#L154
https://github.com/volcano-sh/volcano/blob/2dff5d83e975578eb6ac53436bfa349599ef68cc/pkg/scheduler/plugins/extender/extender.go#L325
https://github.com/volcano-sh/volcano/blob/2dff5d83e975578eb6ac53436bfa349599ef68cc/pkg/scheduler/plugins/extender/extender.go#L325
https://github.com/volcano-sh/volcano/security/advisories/GHSA-hg79-fw4p-25p8

Volcano.sh Security Audit 14th May 2025

Resources unnecessarily run as root

Severity Moderate

Status Fixed

CWE CWE-250: Execution with Unnecessary Privileges, CWE-276:
Incorrect Default Permissions

id ADA-VLCN-2025-2

runAsNonRoot ensures that resources run without root privileges. Volcano should approach this by setting it to true for all
resources and by default and only remove as needed. We found 4 resources containers that were not using this setting which
indicates that the developers have not made the resources run without root privileges by default:

1. volcano-scheduler
2. volcano-admission
3. volcano-controllers
4. volcano-dashboard

There are several risks associated with allowing a resources to run as root in the cluster. An attacker who compromises the
root-privileged application has a wider attack surface to further escalate their privileges than they would if the resource did
not have root privileges. In addition, some container breakout vulnerabilities will allow an attacker to obtain root privileges
on the host if successfully exploited.

If an attacker compromises a Kubernetes container configured with runAsNonRoot=false, they gain root access inside the
container, which dramatically increases the potential impact of the breach. With root privileges, the attacker can:

• Escalate privileges by exploiting kernel vulnerabilities or using setuid binaries to break out of the container and gain
control over the host node.

• Access and modify sensitive files, both inside the container and on mounted host volumes, potentially tampering with
configurations, credentials, or logs.

• Interact with the container runtime or Docker socket (if mounted), enabling them to control other containers, deploy
malicious workloads, or escape into the cluster.

• Access service account tokens and secrets, allowing lateral movement to other pods or direct interaction with the
Kubernetes API for further compromise.

• Bypass security controls like file permissions or audit logging, making detection and containment more difficult.

In short, a compromised root container can serve as a launchpad for full host takeover, data exfiltration, and broader
cluster-level attacks, especially in poorly secured environments.

Fix PR(s):

1. https://github.com/volcano-sh/volcano/pull/4207
2. https://github.com/volcano-sh/dashboard/pull/86

Volcano.sh Security Audit 11

https://github.com/volcano-sh/volcano/pull/4207
https://github.com/volcano-sh/dashboard/pull/86

Volcano.sh Security Audit 14th May 2025

Resources lack seccomp profile

Severity Moderate

Status Fixed

CWE CWE-250: Execution with Unnecessary Privileges, CWE-276:
Incorrect Default Permissions

id ADA-VLCN-2025-3

Seccomp restricts the system calls (syscalls) a container can make to the host kernel. It’s a layer of defense to limit what code
inside a container can do, especially in case the container gets compromised.

Not setting a seccomp profile for Kubernetes containers exposes workloads to several potential security vulnerabilities, partic-
ularly around syscall abuse and kernel-level attack surfaces. As such, a missing seccomp profile is a security misconfiguration
that increases the kernel attack surface and the risk from container escapes.

Kubernetes best practices for Pod hardening dictate that the Seccomp profile is either RuntimeDefault (recommended)
or Localhost. All of the following containers are missing Seccomp profiles:

The following resources are missing seccompProfile:

1. Volcano-scheduler
2. Volcano-admission
3. Volcano-controllers
4. Volcano-dashboard

If an attacker compromises a Kubernetes container that is running without a seccomp profile, they can execute any available
Linux system call, significantly increasing the risk of exploitation. This unrestricted syscall access allows the attacker to:

• Exploit kernel vulnerabilities using dangerous syscalls like unshare, ptrace, or clone, potentially leading to container
escape and host compromise.

• Bypass security boundaries that would otherwise block risky operations (e.g., creating new namespaces or manipulat-
ing kernel memory).

• Run advanced malware or reverse shells that rely on specific syscalls often restricted by seccomp, making it easier to
establish persistence or exfiltrate data.

• Avoid detection, since seccomp profiles also provide syscall filtering and logging, which help in identifying malicious
behavior.

Overall, not using a seccomp profile removes a critical layer of sandboxing, making it far easier for a compromised container
to escalate privileges, attack the host, or pivot deeper into the Kubernetes cluster.

Fix PR(s):

1. https://github.com/volcano-sh/volcano/pull/4207
2. https://github.com/volcano-sh/dashboard/pull/86

Volcano.sh Security Audit 12

https://github.com/volcano-sh/volcano/pull/4207
https://github.com/volcano-sh/dashboard/pull/86

Volcano.sh Security Audit 14th May 2025

Resources are not configured with seLinux

Severity Moderate

Status Fixed

CWE CWE-250: Execution with Unnecessary Privileges, CWE-276:
Incorrect Default Permissions

id ADA-VLCN-2025-4

Not configuring SELinux for Kubernetes containers significantly weakens the security posture of your cluster by eliminating a
critical layer of mandatory access control (MAC). Without SELinux, containers rely solely on discretionary access control
mechanisms like traditional Linux file permissions, which are insufficient in protecting against privilege escalation, container
breakout, or unauthorized access to sensitive resources. SELinux enforces strict policies that limit what processes can
do—even if they are running as root—helping to contain compromised containers and prevent them from affecting the
host or other containers. Without it, any container that gains elevated privileges or misuses mounted host paths (such as
/var/run/docker.sock or /etc) can potentially tamper with the host system or escalate to full control of the node. Moreover,
the absence of SELinux removes fine-grained control over inter-process communication and file access, increasing the risk of
lateral movement within the cluster. This lack of isolation also hinders compliance with security standards and benchmarks,
making the environment more vulnerable to sophisticated attacks.

The following are missing seLinux in their security context:

1. volcano-scheduler
2. volcano-admission
3. volcano-controllers
4. volcano-dashboard

Fix PR(s):

1. https://github.com/volcano-sh/volcano/pull/4207
2. https://github.com/volcano-sh/dashboard/pull/86

Volcano.sh Security Audit 13

https://github.com/volcano-sh/volcano/pull/4207
https://github.com/volcano-sh/dashboard/pull/86

Volcano.sh Security Audit 14th May 2025

Resources may have unnecessary capabilities

Severity Moderate

Status Fixed

CWE CWE-250: Execution with Unnecessary Privileges, CWE-276:
Incorrect Default Permissions

id ADA-VLCN-2025-5

In Kubernetes, capabilities in the securityContext are a way to fine-tune the privileges granted to a container process, offering
more control than simply running as root or non-root. They are part of Linux’s capability-based security model, which breaks
down the all-powerful root privileges into smaller, more manageable pieces.

Managing Linux capabilities in Kubernetes matters because it allows you to enforce the principle of least privilege at a
granular level, significantly reducing the risk of containerized workloads performing unauthorized or dangerous actions. By
default, containers can inherit a broad set of capabilities that may not be necessary for their intended function, exposing the
system to potential abuse if the container is compromised. For example, a container with capabilities like CAP_NET_ADMIN
or CAP_SYS_ADMIN could manipulate network settings or interact with kernel-level features, increasing the likelihood
of privilege escalation or host compromise. Carefully controlling which capabilities are added or dropped limits what a
process can do, even if it runs as root, creating a tighter security boundary and making it much harder for attackers to exploit
misconfigurations or vulnerabilities within the container or the host system.

The best practice for managing capabilities in Kubernetes is to adopt a “deny by default” approach by explicitly dropping all
capabilities and only adding back those that are strictly necessary for the container’s functionality. This is typically done by
setting drop: [“ALL”] in the container’s securityContext, which removes all Linux capabilities—even those normally granted to
the root user—ensuring that the container starts with the minimal privilege set. If the application requires specific capabilities
to operate, such as NET_BIND_SERVICE to bind to a low-numbered port, these can be selectively re-added using the add
field. This approach significantly reduces the container’s attack surface by preventing unnecessary privileges that could be
exploited if the container is compromised. Implementing minimal capabilities, along with other hardening techniques like
runAsNonRoot, seccomp profiles, and SELinux or AppArmor, forms a strong, layered defense strategy for securing Kubernetes
workloads.

1. volcano-scheduler
2. Volcano-admission
3. Volcano-controllers
4. volcano-dashboard

Fix PR(s):

1. https://github.com/volcano-sh/volcano/pull/4207
2. https://github.com/volcano-sh/dashboard/pull/86

Volcano.sh Security Audit 14

https://github.com/volcano-sh/volcano/pull/4207
https://github.com/volcano-sh/dashboard/pull/86

Volcano.sh Security Audit 14th May 2025

Resources allow privilege escalation

Severity Moderate

Status Fixed

CWE CWE-250: Execution with Unnecessary Privileges, CWE-276:
Incorrect Default Permissions

id ADA-VLCN-2025-6

The allowPrivilegeEscalation setting in Kubernetes controls whether a process running in a container can gain
more privileges than its parent process, such as through the use of setuid or setgid binaries. If this option is set to true
or left unset (as it defaults to true), it opens the door for attackers or compromised applications to escalate their privileges
within the container. This can lead to scenarios where a non-root process spawns a child process with elevated capabilities,
potentially bypassing security controls and gaining access to sensitive resources or performing restricted operations. Such
privilege escalation can be particularly dangerous when combined with other misconfigurations, such as overly permissive
Linux capabilities or mounted host paths, enabling attackers to break out of the container and affect the host or other
workloads. Disabling privilege escalation (allowPrivilegeEscalation: false) is a crucial defense-in-depth measure that helps
enforce the principle of least privilege, preventing unauthorized access and reducing the impact of any potential security
breach.

1. volcano-scheduler
2. volcano-admission
3. volcano-controllers
4. volcano-dashboard

We recommend disallowing privilege escalation by default and instead let users enable it if they so require in their par-
ticular deployments. By disallowing privilege escalation by default, Volcano is hardened with best practices in its default
installation.

Fix PR(s):

1. https://github.com/volcano-sh/volcano/pull/4207
2. https://github.com/volcano-sh/dashboard/pull/86

Volcano.sh Security Audit 15

https://github.com/volcano-sh/volcano/pull/4207
https://github.com/volcano-sh/dashboard/pull/86

Volcano.sh Security Audit 14th May 2025

Servers lack header timeouts

Severity Low

Status Fixed

CWE CWE-693: Protection Mechanism Failure

id ADA-VLCN-2025-7

Five of Volcanos servers lack timeouts for HTTP headers. In two of these cases, the serve function has no support for setting
timeouts, and in three of the cases, the servers are not configured with header timeouts. The same is the case for the Volcano
health server.

Timeouts are a hardening mechanism that prevent a request from taking excessive time to process. A request that takes long
for Volcano to process could hog the server and prevent it from processing requests from other users. As such, this prevents
Denial of Service attacks in multi-tenant environments which Volcano is. However, servers can also be exposed to users with
privileges that are limited to only send requests to a vulnerable server, and in those cases, such limited privileges can allow
the attacker to deny the server from other users. An attacker in this scenario could be not just a user, but an intruder who has
managed to manifest themselves in the system.

Configuring HTTP servers is a hardening recommendation; attackers still need to find a way to make Volcanos HTTP servers
take a long time to process a request which there may not be at all times. Nonetheless, Volcano may add such behavior in
the future, and we recommend preventing vulnerabilities for such cases by limiting processing time for a single request.

The following HTTP servers lack configured timeout:

1: Socket

https://github.com/volcano-sh/volcano/blob/690b4b03638f2ee956ae94dfedf1c57f556963ee/pkg/util/socket.go#L203-
L205

1 server := http.Server{
2 Handler: m,
3 }

Issue: Lacks ReadHeaderTimeout Documentation on ReadHeaderTimeout: https://pkg.go.dev/net/http#Server

2: webhook-manager app server:

https://github.com/volcano- sh/volcano/blob/690b4b03638f2ee956ae94dfedf1c57f556963ee/cmd/webhook-
manager/app/server.go#L110-L113

1 server := &http.Server{
2 Addr: config.ListenAddress + ":" + strconv.Itoa(config.Port),
3 TLSConfig: configTLS(config, restConfig),
4 }

3: Agent:

https://github.com/volcano-sh/volcano/blob/690b4b03638f2ee956ae94dfedf1c57f556963ee/cmd/agent/app/app.go#L8
3-L86

1 s := &http.Server{
2 Addr: net.JoinHostPort(address, strconv.Itoa(port)),
3 Handler: mux,
4 }

Volcano.sh Security Audit 16

https://github.com/volcano-sh/volcano/blob/690b4b03638f2ee956ae94dfedf1c57f556963ee/pkg/util/socket.go#L203-L205
https://github.com/volcano-sh/volcano/blob/690b4b03638f2ee956ae94dfedf1c57f556963ee/pkg/util/socket.go#L203-L205
https://pkg.go.dev/net/http#Server
https://github.com/volcano-sh/volcano/blob/690b4b03638f2ee956ae94dfedf1c57f556963ee/cmd/webhook-manager/app/server.go#L110-L113
https://github.com/volcano-sh/volcano/blob/690b4b03638f2ee956ae94dfedf1c57f556963ee/cmd/webhook-manager/app/server.go#L110-L113
https://github.com/volcano-sh/volcano/blob/690b4b03638f2ee956ae94dfedf1c57f556963ee/cmd/agent/app/app.go#L83-L86
https://github.com/volcano-sh/volcano/blob/690b4b03638f2ee956ae94dfedf1c57f556963ee/cmd/agent/app/app.go#L83-L86

Volcano.sh Security Audit 14th May 2025

Issue: Lacks ReadHeaderTimeout Documentation on ReadHeaderTimeout: https://pkg.go.dev/net/http#Server

4: controller-manager metrics

https://github.com/volcano-sh/volcano/blob/690b4b03638f2ee956ae94dfedf1c57f556963ee/cmd/controller-
manager/app/server.go#L59-L64

1 if opt.EnableMetrics {
2 go func() {
3 http.Handle("/metrics", commonutil.PromHandler())
4 klog.Fatalf("Prometheus Http Server failed %s", http.ListenAndServe(opt.

ListenAddress, nil))
5 }()
6 }

Issue: net/http.Handle does not support setting timeouts

5: Scheduler metrics:

https://github.com/volcano-sh/volcano/blob/690b4b03638f2ee956ae94dfedf1c57f556963ee/cmd/scheduler/app/server.
go#L72-L77

1 if opt.EnableMetrics {
2 go func() {
3 http.Handle("/metrics", commonutil.PromHandler())
4 klog.Fatalf("Prometheus Http Server failed %s", http.ListenAndServe(opt.

ListenAddress, nil))
5 }()
6 }

6: Health server

https://github.com/volcano-sh/apis/blob/2d1b261f52f1b0d3c6c345484ce25ff1332cfe97/pkg/apis/helpers/helpers.go#L
202-L206

1 server := &http.Server{
2 Addr: listener.Addr().String(),
3 Handler: pathRecorderMux,
4 MaxHeaderBytes: 1 << 20,
5 }

Issue: Lacks ReadHeaderTimeout Documentation on ReadHeaderTimeout: https://pkg.go.dev/net/http#Server

Fix PR(s):

1. https://github.com/volcano-sh/volcano/pull/4208

Volcano.sh Security Audit 17

https://pkg.go.dev/net/http#Server
https://github.com/volcano-sh/volcano/blob/690b4b03638f2ee956ae94dfedf1c57f556963ee/cmd/controller-manager/app/server.go#L59-L64
https://github.com/volcano-sh/volcano/blob/690b4b03638f2ee956ae94dfedf1c57f556963ee/cmd/controller-manager/app/server.go#L59-L64
https://github.com/volcano-sh/volcano/blob/690b4b03638f2ee956ae94dfedf1c57f556963ee/cmd/scheduler/app/server.go#L72-L77
https://github.com/volcano-sh/volcano/blob/690b4b03638f2ee956ae94dfedf1c57f556963ee/cmd/scheduler/app/server.go#L72-L77
https://github.com/volcano-sh/apis/blob/2d1b261f52f1b0d3c6c345484ce25ff1332cfe97/pkg/apis/helpers/helpers.go#L202-L206
https://github.com/volcano-sh/apis/blob/2d1b261f52f1b0d3c6c345484ce25ff1332cfe97/pkg/apis/helpers/helpers.go#L202-L206
https://pkg.go.dev/net/http#Server
https://github.com/volcano-sh/volcano/pull/4208

Volcano.sh Security Audit 14th May 2025

Scheduler exposes profiling endpoints by default

Severity Low

Status Fixed

CWE CWE-200: Exposure of Sensitive Information to an Unautho-
rized Actor

id ADA-VLCN-2025-8

Volcano Scheduler exposes the profiling endpoints by default to any user with access to the localhost. Profiling data in
sensitive and should be protected in a production setting, whereas allowing users to opt in to enable in for development
is good practice. As of currently, an unauthenticated user with limited privileged but a foothold on localhost can view the
schedulers profiling data.

The profiling server is instantiated with the following import:

https://github.com/volcano-sh/volcano/blob/690b4b03638f2ee956ae94dfedf1c57f556963ee/cmd/scheduler/main.go#L
33

1 _ "net/http/pprof"

Instead of enabling enabling as such, we recommend only allowing it if a given option is enabled when starting the sched-
uler.

Fix PR(s):

1. https://github.com/volcano-sh/volcano/pull/4173

Volcano.sh Security Audit 18

https://github.com/volcano-sh/volcano/blob/690b4b03638f2ee956ae94dfedf1c57f556963ee/cmd/scheduler/main.go#L33
https://github.com/volcano-sh/volcano/blob/690b4b03638f2ee956ae94dfedf1c57f556963ee/cmd/scheduler/main.go#L33
https://github.com/volcano-sh/volcano/pull/4173

Volcano.sh Security Audit 14th May 2025

Missing warning when Volcano is configured to skip SSL certificate verification

Severity Low

Status Fixed

CWE CWE-778: Insufficient Logging

id ADA-VLCN-2025-9

Volcano.sh allows users to skip SSL certificate verification when using the Prometheus and Elastic metrics clients. The option
is disabled by default and users are required to enable it to see the effects which constitutes best practices. However, as a
matter of hardening, we recommend that Volcano logs with warning level that the feature should not be used in production.
As such, if users enable it, they should see a warning log entry.

The Prometheus metrics client lacks a warning here:

https://github.com/volcano-sh/volcano/blob/b9793c4c4cc2531ab4cd3945b178164637b49e73/pkg/scheduler/metrics/s
ource/metrics_client_prometheus.go#L59-L68

1 func (p *PrometheusMetricsClient) NodeMetricsAvg(ctx context.Context, nodeName string)
(*NodeMetrics, error) {

2 klog.V(4).Infof("Get node metrics from Prometheus: %s", p.address)
3 var client api.Client
4 var err error
5 insecureSkipVerify := p.conf["tls.insecureSkipVerify"] == "true"
6 tr := &http.Transport{
7 TLSClientConfig: &tls.Config{
8 InsecureSkipVerify: insecureSkipVerify,
9 },

10 }

The ElasticSearch client lacks a warning here:

https://github.com/volcano-sh/volcano/blob/b9793c4c4cc2531ab4cd3945b178164637b49e73/pkg/scheduler/metrics/s
ource/metrics_client_elasticsearch.go#L67-L77

1 insecureSkipVerify := conf["tls.insecureSkipVerify"] == "true"
2 e.es, err = elasticsearch.NewClient(elasticsearch.Config{
3 Addresses: []string{address},
4 Username: conf["elasticsearch.username"],
5 Password: conf["elasticsearch.password"],
6 Transport: &http.Transport{
7 TLSClientConfig: &tls.Config{
8 InsecureSkipVerify: insecureSkipVerify,
9 },

10 },
11 })

Fix PR(s):

1. https://github.com/volcano-sh/volcano/pull/4211

Volcano.sh Security Audit 19

https://github.com/volcano-sh/volcano/blob/b9793c4c4cc2531ab4cd3945b178164637b49e73/pkg/scheduler/metrics/source/metrics_client_prometheus.go#L59-L68
https://github.com/volcano-sh/volcano/blob/b9793c4c4cc2531ab4cd3945b178164637b49e73/pkg/scheduler/metrics/source/metrics_client_prometheus.go#L59-L68
https://github.com/volcano-sh/volcano/blob/b9793c4c4cc2531ab4cd3945b178164637b49e73/pkg/scheduler/metrics/source/metrics_client_elasticsearch.go#L67-L77
https://github.com/volcano-sh/volcano/blob/b9793c4c4cc2531ab4cd3945b178164637b49e73/pkg/scheduler/metrics/source/metrics_client_elasticsearch.go#L67-L77
https://github.com/volcano-sh/volcano/pull/4211

Volcano.sh Security Audit 14th May 2025

Source files are stored in repository as executables

Severity Informational

Status Fixed

CWE CWE-276: Incorrect Default Permissions

id ADA-VLCN-2025-10

Volcano.sh stores some of its source files as executable binaries in its source tree. This is a sub-optimal practice that could
lead to unwanted risks. We did not find any method this could be exploited at this audit, but Volcano should avoid this
practice altogether. We found the following files to have executable permissions:

1. pkg/controllers/jobtemplate/constant.go
2. pkg/controllers/jobtemplate/jobtemplate_controller_handler_test.go
3. pkg/controllers/jobtemplate/jobtemplate_controller_action.go
4. pkg/controllers/jobtemplate/jobtemplate_controller_util.go
5. pkg/controllers/jobtemplate/jobtemplate_controller_handler.go
6. pkg/controllers/jobtemplate/jobtemplate_controller_action_test.go
7. pkg/controllers/jobtemplate/jobTemplate_controller_util_test.go
8. pkg/controllers/jobtemplate/jobtemplate_controller.go
9. pkg/controllers/jobflow/constant.go

10. pkg/controllers/jobflow/jobflow_controller_handler.go
11. pkg/controllers/jobflow/jobflow_controller_util_test.go
12. pkg/controllers/jobflow/jobflow_controller_action_test.go
13. pkg/controllers/jobflow/state/pending.go
14. pkg/controllers/jobflow/state/running.go
15. pkg/controllers/jobflow/state/factory.go
16. pkg/controllers/jobflow/state/terminating.go
17. pkg/controllers/jobflow/state/failed.go
18. pkg/controllers/jobflow/state/succeed.go
19. pkg/controllers/jobflow/jobflow_controller_action.go
20. pkg/controllers/jobflow/jobflow_controller.go
21. pkg/controllers/jobflow/jobflow_controller_util.go
22. pkg/controllers/jobflow/jobflow_controller_handler_test.go
23. pkg/webhooks/admission/pods/mutate/annotation.go
24. pkg/webhooks/admission/pods/mutate/factory.go
25. pkg/webhooks/admission/pods/mutate/namespace.go

Fix PR(s):

1. https://github.com/volcano-sh/volcano/pull/4171

Volcano.sh Security Audit 20

https://github.com/volcano-sh/volcano/pull/4171

	About Ada Logics
	Audit contacts
	Introduction
	Risk scoring
	Scope

	Volcano.sh threat model
	Volcano.sh trust boundaries
	Volcano.sh example attacks
	Volcano.sh threat actors

	Found issues
	Attacker with foothold in elastic service or extender plugin can cause denial of service of scheduler
	Resources unnecessarily run as root
	Resources lack seccomp profile
	Resources are not configured with seLinux
	Resources may have unnecessary capabilities
	Resources allow privilege escalation
	Servers lack header timeouts
	Scheduler exposes profiling endpoints by default
	Missing warning when Volcano is configured to skip SSL certificate verification
	Source files are stored in repository as executables

